SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "swepub ;pers:(Ottersten Björn 1961);lar1:(kth);pers:(Vu T. X.)"

Search: swepub > Ottersten Björn 1961 > Royal Institute of Technology > Vu T. X.

  • Result 1-10 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • You, Lei, et al. (author)
  • Learning-Assisted Optimization for Energy-Efficient Scheduling in Deadline-Aware NOMA Systems
  • 2019
  • In: IEEE Transactions on Green Communications and Networking. - : Institute of Electrical and Electronics Engineers (IEEE). - 2473-2400. ; 3:3, s. 615-627
  • Journal article (peer-reviewed)abstract
    • In this paper, we study a class of minimum-energy scheduling problems in non-orthogonal multiple access (NOMA) systems. NOMA is adopted to enable efficient channel utilization and interference mitigation, such that base stations can consume minimal energy to empty their queued data in presence of transmission deadlines, and each user can obtain all the requested data timely. Due to the high computational complexity in resource scheduling and the stringent execution-time constraints in practical systems, providing a time-efficient and high-quality solution to 5G real-time systems is challenging. The conventional iterative optimization approaches may exhibit their limitations in supporting online optimization. We herein explore a viable alternative and develop a learning-assisted optimization framework to improve the computational efficiency while retaining competitive energy-saving performance. The idea is to use deep-learning-based predictions to accelerate the optimization process in conventional optimization methods for tackling the NOMA resource scheduling problems. In numerical studies, the proposed optimization framework demonstrates high computational efficiency. Its computational time is insensitive to the input size. The framework is able to provide optimal solutions as long as the learning-based predictions satisfy a derived optimality condition. For the general cases with imperfect predictions, the algorithmic solution is error-tolerable and performance scaleable, leading the energy-saving performance close to the global optimum.
  •  
2.
  • Bommaraveni, S., et al. (author)
  • Active Content Popularity Learning and Caching Optimization with Hit Ratio Guarantees
  • 2020
  • In: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 8, s. 151350-151359
  • Journal article (peer-reviewed)abstract
    • Edge caching is an effective solution to reduce delivery latency and network congestion by bringing contents close to end-users. A deep understanding of content popularity and the principles underlying the content request sequence are required to effectively utilize the cache. Most existing works design caching policies based on global content requests with very limited consideration of individual content requests which reflect personal preferences. To enable the optimal caching strategy, in this article, we propose an Active learning (AL) approach to learn the content popularities and design an accurate content request prediction model. We model the content requests from user terminals as a demand matrix and then employ AL-based query-by-committee (QBC) matrix completion to predict future missing requests. The main principle of QBC is to query the most informative missing entries of the demand matrix. Based on the prediction provided by the QBC, we propose an adaptive optimization caching framework to learn popularities as fast as possible while guaranteeing an operational cache hit ratio requirement. The proposed framework is model-free, thus does not require any statistical knowledge about the underlying traffic demands. We consider both the fixed and time-varying nature of content popularities. The effectiveness of the proposed learning caching policies over the existing methods is demonstrated in terms of root mean square error, cache hit ratio, and cache size on a simulated dataset.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Gautam, S., et al. (author)
  • Multigroup Multicast Precoding for Energy Optimization in SWIPT Systems With Heterogeneous Users
  • 2020
  • In: IEEE Open Journal of the Communications Society. - : Institute of Electrical and Electronics Engineers (IEEE). - 2644-125X. ; 1, s. 92-108
  • Journal article (peer-reviewed)abstract
    • The key to developing future generations of wireless communication systems lies in the expansion of extant methodologies, which ensures the coexistence of a variety of devices within a system. In this paper, we assume several multicasting (MC) groups comprising three types of heterogeneous users including Information Decoding (ID), Energy Harvesting (EH) and both ID and EH. We present a novel framework to investigate the multi-group (MG) - MC precoder designs for three different scenarios, namely, Separate Multicast and Energy Precoding Design (SMEP), Joint Multicast and Energy Precoding Design (JMEP), and Per-User Information and/or Energy Precoding Design (PIEP). In the considered system, a multi-antenna source transmits the relevant information and/or energy to the groups of corresponding receivers using more than one MC streams. The data processing users employ the conventional ID receiver architectures, the EH users make use of a non-linear EH module for energy acquisition, while the users capable of performing both ID and EH utilize the separated architecture with disparate ID and non-linear EH units. Our contribution is threefold. Firstly, we propose an optimization framework to i) minimize the total transmit power and ii) to maximize the sum harvested energy, the two key performance metrics of MG-MC systems. The proposed framework allows the analysis of the system under arbitrary given quality of service and harvested energy requirements. Secondly, to deal with the non-convexity of the formulated problems, we transform the original problems respectively into equivalent forms, which can be effectively solved by semi-definite relaxation (SDR) and alternating optimization. The convergence of the proposed algorithms is analytically guaranteed. Thirdly, a comparative study between the proposed schemes is conducted via extensive numerical results, wherein the benefits of adopting SMEP over JMEP and PIEP models are discussed.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view